Reaction of \boldsymbol{N}-Substituted Cyclic Amines with 2,4-Dichloroquinazoline, 2,4Dichloropyrimidine, and its 5-Methyl Derivative

Kenji Yoshida * and Masahiro Taguchi
Pharmaceuticals Research Center, Kanebo Ltd., 5-90, Tomobuchi-cho 1-Chome, Miyakojima-ku, Osaka 534, Japan

Abstract

The reaction of N-substituted cyclic amines with 2,4-dichloroquinazoline 2 and 2,4-dichloro-5-methylpyrimidine 3b afforded 2-amino-4-chloroquinazolines and 2-amino-4-chloro-5-methylpyrimidines, respectively. However, the reaction of these amines with 2,4-dichloropyrimidine 3a afforded not only 2 -amino-4-chloropyrimidines but also the isomeric 4 -amino-2-chloropyrimidines. The regioselectivity of these reactions was considered to be determined by the steric nature of the substrates 2, 3a and 3b.

In our previous paper, we described how the reaction of quinazoline- $2,4(1 \mathrm{H}, 3 \mathrm{H})$-dione with N-substituted cyclic amines in combination with phosphoryl trichloride afforded 4-chloro-2-(cyclic amino)quinazolines regioselectively. ${ }^{1}$ Moreover, we reported that 2,4-dichloroquinazoline 2 was considered as an intermediate in the reaction. We have now found that the reaction of compound 2 with N-methylpiperidine $\mathbf{1 b}$ in 1,4dioxane afforded 4-chloro-2-piperidinoquinazoline $\mathbf{4 a}$. In order to elucidate the regioselectivity of the reaction, we focused on the reaction of N-substituted cyclic amines (1a-f) with 2,4dichloropyrimidine 3a and 2,4-dichloro-5-methylpyrimidine 3b. This paper describes the reactions of cyclic amines 1a-f with substrates 2, 3a and 3b.

When compound 2 was allowed to react with N -methylpiperidine 1 lb (1.2 mol equiv.) in 1,4 -dioxane at $100^{\circ} \mathrm{C}$ for 1 h , 4 -chloro-2-piperidinoquinazoline 4 a was isolated in 92% yield. The structure of the product $4 \mathbf{4}$ was confirmed by comparison with an authentic sample prepared by the method described in our previous paper. ${ }^{1}$ In order to elucidate the scope and limitation of this type of reaction, the reaction of compound 2 with other cyclic amines was examined. The results are summarized in Table 1. In the case of six- or seven-membered cyclic amines ($\mathbf{1 b} \mathbf{e}$), the reaction proceeded regioselectively, and only quinazoline derivatives ($\mathbf{4 a}$ or $\mathbf{4 b}$), in which cyclic amines were substituted at the 2-position of quinazoline, were isolated. On the other hand, the reaction of compound 2 with five-membered cyclic amine 1a afforded 4-chloro-2-[N -(4-chlorobutyl)- N-methylamino]quinazoline 5 . These results were in good accord with those of the reaction of quinazoline2,4($1 \mathrm{H}, 3 \mathrm{H}$)-dione with N -substituted cyclic amines in combination with phosphoryl trichloride. ${ }^{1}$

It is well known that the 4 -position of the quinazoline $\mathbf{2}$ is more reactive than the 2-position toward nucleophilic attack by primary or secondary amines. ${ }^{2}$ The above reaction, however, indicates that the 2 -position of compound 2 is more reactive than the 4 -position for the attack by tertiary amines. In order to elucidate the regioselectivity of the above reaction, the reaction of substrates 1a-f with 2,4-dichloropyrimidine 3a and 2,4-dichloro-5-methylpyrimidine 3b was examined.

The reaction of the methylpyrimidine 3b with N-methylpiperidine 1b afforded 4-chloro-5-methyl-2-piperidinopyrimidine $6 \mathbf{c}$ in 84% yield. The structure of compound $\mathbf{6 c}$ was confirmed by comparison with an authentic sample prepared by chlorination of 5-methyl-2-piperidinopyrimidin-4(3H)-one. ${ }^{3}$ The structure of product 6 c was further confirmed by comparison of its NMR spectra with those of 2-chloro-5-methyl-4-piperidinopyrimidine 7 c , which was prepared by the reaction of dichloride 3b with piperidine. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$

b; R=M日, $n=5$
c; $\mathrm{R}=\mathrm{Me}, n=6$
d; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, n=5$
e; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, n=5$
$f ; R=P r, n=5$

4a; $n=5$
$n=6$

6a; $R=H, n=5$
b; $R=H, n=6$
c; $\mathrm{R}=\mathrm{Me}, n=5$

$R=H$
b; $R=M e$

5

7a; $R=H, n=5$
b; $R=H, n=6$
c; $R=M e, n=5$

9

NMR assignments of regioisomers $6 c$ and 7 c were made based on C-H COSY, COLOC, and LSPD spectra and the data are shown in Tables 2 and 3 . In the UV spectra, regioisomers $\mathbf{6 c}$ and 7 c showed an absorption maximum at 325 and 289 nm , respectively. The results of the reaction of dichloride $\mathbf{3 b}$ with other N-substituted cyclic amines are summarized in Table 1. In the case of N-substituted six- or seven-membered cyclic amines, 4-chloro-2-(cyclic amino)-5-methylpyrimidines (6 c or 6 d) were obtained. However, in the case of N-substituted five-membered cyclic amine 1a, 4-chloro-2-[N-(4-chlorobutyl)- N-methyl-

Table 1 Reaction of N-substituted cyclic amines (1a-f) with 2,4-dichloroquinazoline 2, 2,4-dichloropyrimidines 3a, or 2,4-dichloro-5methylpyrimidine 3b in 1,4-dioxane

Amine	Dichloride	Reaction temp. $\left({ }^{\circ} \mathrm{C}\right)$	Reaction time (t / h)	Product	Isolation yield (\%)
1a	2	100	0.5	5	43
1b	2	100	,	4a	92
1c	2	100	1	4b	87
1d	2	120	6	4a, $2^{\text {a }}$	12, $77^{\text {a }}$
1e	2	120	12	4a, $2^{\text {a }}$	8, $72{ }^{\text {a }}$
12	3a	120	1	8a, 9	5,80
1b	3a	120	1.5	6a, 7a	24,76
1c	3a	120	2	6b, 7 b	34, 60
1d	3a	120	6	6a, 7a, 3a ${ }^{\text {a }}$	43, 31, $16^{\text {a }}$
1 e	3a	120	12	6a, 7a, 3a ${ }^{\text {a }}$	22, 20, 49^{a}
$1 f$	3a	120	4	6a, 7a, 3a ${ }^{\text {a }}$	40,38, $14^{\text {a }}$
1 a	3b	100	4	8b	78
1b	3b	100	4	6 c	84
1c	3b	120	2	$6 d$	83
1d	3b	120	12	6c, $\mathbf{3 b}^{\text {a }}$	19, $74^{\text {a }}$
1 e	3b	120	36	6c, $\mathbf{3 b}^{\text {a }}$	$4,87{ }^{a}$

${ }^{a}$ Recovered.

Table $2{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) of compound $\mathbf{6 c}$ in CDCl_{3}, and results of COLOC experiments ${ }^{a}$

	${ }^{1} \mathrm{H}$			
	$1.54-1.67$ $\left(3^{\prime}-, 4^{\prime}-, 5^{\prime}-\mathrm{H}\right)$	2.12 $(5-\mathrm{Me})$	3.73 $\left(2^{\prime}-, 6^{\prime}-\mathrm{H}\right)$	8.04 $(6-\mathrm{H})$
${ }^{13} \mathrm{C}$	${ }^{3} J$	${ }^{3} J^{b}$	${ }^{3} J$	
$160.6(\mathrm{C}-4)$				${ }^{3} J$
$160.4(\mathrm{C}-2)$		${ }^{3} J$		${ }^{2} J$
$158.7(\mathrm{C}-6)$			${ }^{1} J$	${ }^{2} J$
$115.3(\mathrm{C}-5)$		${ }^{2} J$		
$44.7\left(\mathrm{C}-2^{\prime},-6^{\prime}\right)$		${ }^{3} J$		
$25.6\left(\mathrm{C}-3^{\prime},-5^{\prime}\right)$	${ }^{1} J$	${ }^{1} J$		${ }^{3} J$
$24.6\left(\mathrm{C}-4^{\prime}\right)$	${ }^{1} J$			
$15.1(5-\mathrm{Me})$				

${ }^{a}{ }^{2} J,{ }^{3} \mathrm{~J}$ and ${ }^{4} \mathrm{~J}$ indicate long-range coupling through two, three and four bonds, respectively. ${ }^{b}$ Change of the multiplicity was observed in LSPD experiment irradiated at $\delta \mathbf{3 . 7 3}$.

Table $3{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts (δ) of compound 7c in CDCl_{3}, and results of COLOC experiments ${ }^{a}$

	${ }^{1} \mathrm{H}$			
	$1.62-1.74$ $\left(3^{\prime}-, 4^{\prime}-, 5^{\prime}-\mathrm{H}\right)$	2.19 $(5-\mathrm{Me})$	3.49 $\left(2^{\prime}-, 6^{\prime}-\mathrm{H}\right)$	7.88 $(6-\mathrm{H})$
${ }^{13} \mathrm{C}$		${ }^{3} J$	${ }^{3} J^{b}$	${ }^{6} J$
$165.3(\mathrm{C}-4)$			${ }^{3} J$	
$159.0(\mathrm{C}-6)$		${ }^{3} J$		${ }^{3} J$
$157.6(\mathrm{C}-2)$			${ }^{1} J$	
$114.9(\mathrm{C}-5)$		${ }^{2} J$		
$48.3\left(\mathrm{C}-2^{\prime},-6^{\prime}\right)$		${ }^{3} J$	${ }^{3} J$	
$25.7\left(\mathrm{C}-3^{\prime},-5^{\prime}\right)$	${ }^{1} J$		${ }^{3} J$	
$17.3\left(\mathrm{C}-4^{\prime}\right)$	${ }^{1} J$			

${ }^{a}{ }^{2} J,{ }^{3} \mathrm{~J}$ and ${ }^{4} \mathrm{~J}$ indicate long-range coupling through two, three and four bonds, respectively. ${ }^{b}$ Change of the multiplicity was observed in LSPD experiment irradiated at $\delta 3.49$.
amino]-5-methylpyrimidine $\mathbf{8 b}$ was obtained. The UV spectra of products $\mathbf{6 c}, \mathbf{6 d}$ and $\mathbf{8 b}$ showed an absorption maximum at $\sim 320 \mathrm{~nm}$ (Table 4) and suggested that the amino groups were substituted at the 2-position of the pyrimidine ring.

On the other hand, the reaction of the piperidine 16 with dichloropyrimidine 3a afforded not only 4-chloro-2-piperidinopyrimidine 6a but also its regioisomer 2-chloro-4-piperidinopyrimidine 7 a in 24 and 76% yield, respectively. The structure of
the products 6a and 7a was confirmed by comparison with authentic samples, which were prepared by chlorination ${ }^{4}$ of 2-piperidinopyrimidin- $4(3 H)$-one and by the reaction ${ }^{5}$ of dichloride 3a with piperidine, respectively. These structures were further confirmed by the UV absorption maximum, at 315 and 290 nm respectively, which were in good accord with those of compounds $6 c$ and $7 c$, respectively.

The reaction of dichloride 3 a with other N-substituted six- or seven-membered cyclic amines also afforded not only 2 -chloro-4-(cyclic amino)-5-methylpyrimidine ($6 \mathbf{a}$ or $6 \mathbf{b}$) but also the regioisomeric 4-chloro-2-(cyclic amino)-5-methylpyrimidine (7a or 7b). In the case of N-methyl five-membered cyclic amine 1a, 4-chloro-2-[N-(4-chlorobutyl)- N-methylamino]pyrimidine 8a and 2-chloro-4-[N-(4-chlorobutyl)- N-methylamino]pyrimidine 9 were obtained. The results are summarized in Table 1 and the structure of the products was assigned by their UV and ${ }^{1} \mathrm{H}$ NMR spectral data (Tables 4 and 5).

It was reported that the reactivity of the 2 -position of dichloride 3a relative to the 4-position increases as the solvent polarity and the nucleophilicity of the primary and secondary amines are decreased. ${ }^{6}$ In the above reaction of compound 3a with tertiary amines, the ratios of 2 -amino-4-chloropyrimidines to 4-amino-2-chloropyrimidines increased with the increased bulk of the N-substituent and the ring size of the cyclic amines (8a/9, 6a/7a and 6b/7b).

The 4-position of compound 3 a is considered to be more hindered than the 2-position by the presence of a hydrogen atom at the 5 -position. Therefore, the increase of these ratios is explained by the steric hindrance between N-substituted cyclic amines and the hydrogen atom at the 5 -position of compound 3a.

On the other hand, compound 2 has a hydrogen atom at the 5-position (peri-position) and compound $\mathbf{3 b}$ has a methyl group at the 5 -position. Owing to the presence of these groups, the 4 -position of compounds 2 and 3 b is considered to be more hindered than that of compound 3a. The steric interaction between these groups and the N-substituted cyclic amines is considered to be a main reason for the regioselective attack by the cyclic amines on the 2-position of substrates 2 and $\mathbf{3 b}$.

In conclusion, the regioselectivity of the reaction of compound 2, 3a or 3b with the N-substituted cyclic amines are reasonably explained by the steric hindrance between the N substituted cyclic amines and the substituent at the 5 -position of the substrate $2,3 \mathrm{a}$ or $\mathbf{3 b}$. The reaction of compounds 2 and 3b with the N-substituted cyclic amines offers a new synthetic

Table 4 Physical data for 2-amino-4-chloropyrimidines ($\mathbf{6 a}$-d, 8a, 8b) and 4-amino-2-chloropyrimidines (7a-c, 9)

Compound	M.p. (${ }^{\circ} \mathrm{C}$)	Recrystallization solvent	m / z	$\begin{aligned} & \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \\ & \left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) \end{aligned}$	Formula	Found (\%) (Requires)		
						C	H	N
6a ${ }^{\text {a }}$	oil		197 (${ }^{+}$),	315 (2300),	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClN}_{3}$	54.5	6.2	21.2
			96 (base)	251 (22 800)		(54.69	6.12	21.26)
6b	oil		211 (${ }^{+}$),	318 (2400),	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}_{3} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}$	56.3	6.6	19.5
			70 (base)	251 (22 200)		(56.26	6.70	19.68)
6 c	oil		211 (${ }^{+}$),	325 (2500),	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}_{3}$	56.45	6.5	19.8
			204 (base)	250 (25 600)		(56.74	6.67	19.85)
6d	oil		225 (M^{+}, base),	327 (2000),	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClN}_{3}$	58.4	7.1	18.5
		hexane	164	251 (20 400)		(58.53	7.14	18.62)
$7{ }^{\text {a }}$	81-82		197 (${ }^{+}$, base),	290 (4800),	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{ClN}_{3}$	54.8	6.1	21.3
			218	254 (17900)		(54.69	6.12	21.26)
7b	oil		211 (${ }^{+}$),	290 (400),	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}_{3}$	56.7	6.6	19.6
			232 (base)	253 (16900)		(56.74	6.67	19.85)
$7 c^{\text {c }}$	61-62	hexane	283 (M^{+}),	289 (7000),	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}_{3}$	56.7	6.5	19.9
			206 (base)	262 (10600)		(56.74	6.67	19.58)
8a	oil		233 (${ }^{+}$) ,	316 (2700),	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3}$	46.3	5.5	17.8
			91 (base)	$248(23100)$		(46.17	5.60	17.95)
8b	oil		247 (${ }^{+}$),	324 (2700),	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3}$	48.3	6.0	16.9
			206 (base)	248 (24 300)		(48.40	6.09	16.93)
9	oil		$233\left(\mathrm{M}^{+}\right)$	$289(4400)$	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3}$	46.35	5.6	17.7
			91 (base)	$251(15600)$		(46.17	5.60	17.95)

${ }^{a}$ Ref. 4. ${ }^{b}$ Ref. 5. ${ }^{c}$ Ref. 7.

Table $5{ }^{1} \mathrm{H}$ NMR spectral data for 2-amino-4-chloropyrimidines ($\mathbf{6 a - d}, \mathbf{8 a}, \mathbf{8 b}$) and 4-amino-2-chloropyrimidines (7a-c, 9). Chemical shifts (δ) and coupling constant (Hz , in parentheses)

Compound	5-H	6-H	Others
6 a	6.43 (d, $J 5.1)$	8.12 (d, $J 5.1)$	1.54-1.74 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$) , 3.77 (4 H, t, J 5.4, NCH_{2})
6b	6.44 (d, J 5.1)	8.13 (d, J 5.1)	1.52-1.84 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.73 ($4 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{NCH}_{2}$)
6 c		8.04 (s)	$1.54-1.74\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.13$ ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 3.73 ($\left.4 \mathrm{H}, \mathrm{t}, J 5.3, \mathrm{NCH}_{2}\right)$
6 d		8.05 (s)	1.52-1.88 ($8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.14 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 3.70 ($4 \mathrm{H}, \mathrm{t}, J 5.9, \mathrm{NCH}_{2}$)
7a	6.38 (d, J 6.2)	7.97 (d, J6.2)	$1.57-1.77\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 3.52-3.72 (4 H, m, NCH_{2})
7b	6.29 (d, J 6.2)	7.97 (d, J 6.2)	$1.48-1.86\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.36-3.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$)
7c		7.89 (s)	$1.62-1.74\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.43-3.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$
8 8	6.47 (d, $J 5.1)$	8.13 (d, $J 5.1$)	1.72-1.88 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.13 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.53-3.72 (4 H, m, NCH_{2} and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$
8b		8.05 (s)	1.68-1.85 (4 H, m, CH2 CH2), $2.14(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.11$ ($\mathbf{3} \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $3.56-3.70(4 \mathrm{H}, \mathrm{m}$, NCH_{2} and $\mathrm{CH}_{2} \mathrm{Cl}$)
9	6.30 (d, J 6.1)	8.01 (d, J6.1)	1.68-1.88(4 H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.06 (3 H, s, NMe), 3.50-3.74(4 H, m, NCH_{2} and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$

method for 4-chloro-2-(cyclic amino)quinazolines and 4-chloro-2-(cyclic amino)-5-methylpyrimidines.

Experimental

M.p.s were measured with a Yamato capillary melting point apparatus, model MP-21, and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker AM-300 spectrometer for solutions in CDCl_{3}, and tetramethylsilane was used as internal reference. Mass spectra were determined with an Hitachi M-80B spectrometer. Analytical and preparative TLC (PLC) were performed on silica gel $60 \mathrm{~F}_{254}$ precoated plates (No. 5717 and No. 5715, respectively; Merck).

Reaction of Compounds 2, 3a and 3b with Several NSubstituted Cyclic Amines.-The results are summarized in Table 1. As a typical example, the reaction of dichloride 2 with amine 1 b is described below. A mixture of compound $2(0.40 \mathrm{~g}$, 2.0 mmol) and amine $1 \mathrm{lb}(0.24 \mathrm{~g}, 2.4 \mathrm{mmol})$ in 1,4-dioxane (5.0 cm^{3}) was heated at $100^{\circ} \mathrm{C}$ for 1 h . After being cooled to room temperature, the mixture was concentrated under reduced pressure. Upon PLC with hexane-AcOEt (5:1) as developing solvent, followed by recrystallization from MeCN , the residue gave compound $4 \mathrm{a}(046 \mathrm{~g}, 92 \%)$ as crystals, m.p. $73-$ $75^{\circ} \mathrm{C}$.

Preparation of 4-Chloro-2-piperidinopyrimidine 6a.-A mixture of 2-piperidinopyrimidin-4 $(3 \mathrm{H})$-one ${ }^{4}(0.18 \mathrm{~g}, 1.0 \mathrm{mmol})$ and phosphoryl trichloride $(0.31 \mathrm{~g}, 2.0 \mathrm{mmol})$ was heated at $100^{\circ} \mathrm{C}$ for 1 h . After being cooled to room temperature, the mixture was dissolved in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and poured into icewater. After being neutralized with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$, the organic layer was separated, washed with water, dried over MgSO_{4}, and evaporated under reduced pressure. Upon PLC [hexane-AcOEt (5:1)] the residue gave compound $6 \mathbf{a}(0.17 \mathrm{~g}$, 86%) as an oil.

Preparation of 4-Chloro-5-methyl-2-piperidinopyrimidine 6c.--A mixture of 5-methyl-2-piperidinopyrimidin-4(3H)-one ${ }^{3}$ $(0.19 \mathrm{~g}, 1.0 \mathrm{mmol})$ and phosphoryl trichloride $(0.31 \mathrm{~g}, 2.0$ mmol) was heated at $100^{\circ} \mathrm{C}$ for 30 min . After being cooled to room temperature, the mixture was dissolved in $\mathrm{CHCl}_{3}(10$ cm^{3}) and poured into ice-water. After being neutralized with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$, the organic layer was separated, washed with water, dried over MgSO_{4}, and evaporated under reduced pressure. Upon PLC (hexane-AcOEt (5:1)] the residue gave compound $6 \mathrm{c}(0.20 \mathrm{~g}, 93 \%)$ as an oil.

Preparation of 2-Chloro-5-methyl-4-piperidinopyrimidine 7c.-A solution of piperidine ($0.34 \mathrm{~g}, 4.4 \mathrm{mmol}$) in 1,4 -dioxane $\left(3.0 \mathrm{~cm}^{3}\right)$ was added dropwise to an ice-cooled solution of $2,4-$
dichloro-5-methylpyrimidine $3 \mathrm{~b}(0.33 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $1,4-$ dioxane $\left(3.0 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for $2 h$ and then evaporated under reduced pressure. Upon PLC [hexane-AcOEt (3:1)] the residue gave compound $7 \mathrm{c}(0.35 \mathrm{~g}$, 83%) as crystals.

Acknowledgements

We thank Dr. Goro Tsukamoto for his continued interest and encouragement.

2 W. L. F. Armarego, in The Chemistry of Heterocyclic Compounds, Fused Pyrimidines, Part 1, Quinazolines, Wiley, New York, 1967, p. 228.

3 J. Reiter and L. Toldy, Acta Chim. Acad. Sci. Hung., 1974, 82, 99.
4 B. Roth and L. A. Schloemer, J. Org. Chem., 1963, 28, 2659.
5 C. A. H. Rasmussen, H. C. van der Plas, P. Grotenhuis and A. Koudijs, J. Heterocycl. Chem., 1978, 15, 1121.

6 O. A. Zagulyaeva, N. V. Bukhatkina and V. P. Mamaev, Zh. Org. Khim., 1978, 14, 409.
7 I. I. Kuz'menko, USSR Pat., 551 329, 1977 (Chem. Abstr., 1977, 87, 39530); I. I. Kuz'menko and Yu. V. Bardik, Fiz. Akt. Veshchestva, 1988, 20, 1 (Chem. Abstr., 1989, 110, 18178).

Paper 1/04812K
Received 17th September 1991 Accepted 10th December 1991

