Reaction of *N*-Substituted Cyclic Amines with 2,4-Dichloroquinazoline, 2,4-Dichloropyrimidine, and its 5-Methyl Derivative

Kenji Yoshida * and Masahiro Taguchi

Pharmaceuticals Research Center, Kanebo Ltd., 5-90, Tomobuchi-cho 1-Chome, Miyakojima-ku, Osaka 534, Japan

The reaction of *N*-substituted cyclic amines with 2,4-dichloroquinazoline **2** and 2,4-dichloro-5-methylpyrimidine **3b** afforded 2-amino-4-chloroquinazolines and 2-amino-4-chloro-5-methylpyrimidines, respectively. However, the reaction of these amines with 2,4-dichloropyrimidine **3a** afforded not only 2-amino-4-chloropyrimidines but also the isomeric 4-amino-2-chloropyrimidines. The regioselectivity of these reactions was considered to be determined by the steric nature of the substrates **2**, **3a** and **3b**.

In our previous paper, we described how the reaction of quinazoline-2,4(1*H*,3*H*)-dione with *N*-substituted cyclic amines in combination with phosphoryl trichloride afforded 4-chloro-2-(cyclic amino)quinazolines regioselectively.¹ Moreover, we reported that 2,4-dichloroquinazoline **2** was considered as an intermediate in the reaction. We have now found that the reaction of compound **2** with *N*-methylpiperidine **1b** in 1,4-dioxane afforded 4-chloro-2-piperidinoquinazoline **4a**. In order to elucidate the regioselectivity of the reaction, we focused on the reaction of *N*-substituted cyclic amines (**1a**-**f**) with 2,4-dichloropyrimidine **3a** and 2,4-dichloro-5-methylpyrimidine **3b**. This paper describes the reactions of cyclic amines **1a**-**f** with substrates **2**, **3a** and **3b**.

When compound 2 was allowed to react with N-methylpiperidine 1b (1.2 mol equiv.) in 1,4-dioxane at 100 °C for 1 h, 4-chloro-2-piperidinoquinazoline 4a was isolated in 92% yield. The structure of the product 4a was confirmed by comparison with an authentic sample prepared by the method described in our previous paper.¹ In order to elucidate the scope and limitation of this type of reaction, the reaction of compound 2 with other cyclic amines was examined. The results are summarized in Table 1. In the case of six- or seven-membered cyclic amines (1b-e), the reaction proceeded regioselectively, and only quinazoline derivatives (4a or 4b), in which cyclic amines were substituted at the 2-position of quinazoline, were isolated. On the other hand, the reaction of compound 2 with five-membered cyclic amine 1a afforded 4-chloro-2-[N-(4chlorobutyl)-N-methylamino]quinazoline 5. These results were in good accord with those of the reaction of quinazoline-2,4(1H,3H)-dione with N-substituted cyclic amines in combination with phosphoryl trichloride.¹

It is well known that the 4-position of the quinazoline 2 is more reactive than the 2-position toward nucleophilic attack by primary or secondary amines.² The above reaction, however, indicates that the 2-position of compound 2 is more reactive than the 4-position for the attack by tertiary amines. In order to elucidate the regioselectivity of the above reaction, the reaction of substrates 1a-f with 2,4-dichloropyrimidine 3a and 2,4dichloro-5-methylpyrimidine 3b was examined.

The reaction of the methylpyrimidine **3b** with *N*-methylpiperidine **1b** afforded 4-chloro-5-methyl-2-piperidinopyrimidine **6c** in 84% yield. The structure of compound **6c** was confirmed by comparison with an authentic sample prepared by chlorination of 5-methyl-2-piperidinopyrimidin-4(3*H*)-one.³ The structure of product **6c** was further confirmed by comparison of its NMR spectra with those of 2-chloro-5methyl-4-piperidinopyrimidine **7c**, which was prepared by the reaction of dichloride **3b** with piperidine. The ¹H and ¹³C

NMR assignments of regioisomers 6c and 7c were made based on C-H COSY, COLOC, and LSPD spectra and the data are shown in Tables 2 and 3. In the UV spectra, regioisomers 6cand 7c showed an absorption maximum at 325 and 289 nm, respectively. The results of the reaction of dichloride 3b with other N-substituted cyclic amines are summarized in Table 1. In the case of N-substituted six- or seven-membered cyclic amines, 4-chloro-2-(cyclic amino)-5-methylpyrimidines (6c or 6d) were obtained. However, in the case of N-substituted five-membered cyclic amine 1a, 4-chloro-2-[N-(4-chlorobutyl)-N-methyl-

Table 1 Reaction of *N*-substituted cyclic amines (1a-f) with 2,4-dichloroquinazoline 2, 2,4-dichloropyrimidines 3a, or 2,4-dichloro-5-methylpyrimidine 3b in 1,4-dioxane

Amine	Dichloride	Reaction temp. (°C)	Reaction time (t/h)	Product	Isolation yield (%)
la	2	100	0.5	5	43
1b	2	100	1	4 a	92
lc	2	100	1	4b	87
1đ	2	120	6	4a, 2ª	12, 77 "
le	2	120	12	4a, 2ª	8,72"
1a	3a	120	1	8a, 9	5, 80
1b	3a	120	1.5	6a, 7a	24, 76
lc	3a	120	2	6b, 7b	34, 60
1d	3a	120	6	6a, 7a, 3aª	43, 31, 16 ^{<i>a</i>}
le	3a	120	12	6a, 7a, 3aª	22, 20, 49 <i>ª</i>
lf	3a	120	4	6a, 7a, 3a ª	40, 38, 14 <i>ª</i>
la	3b	100	4	8b	78
1b	3b	100	4	6c	84
lc	3b	120	2	6d	83
ld	3b	120	12	6c, 3b ^a	19, 74"
le	3b	120	36	6c, 3b ^a	4, 87 "

^a Recovered.

Table 2 ¹H and ¹³C NMR chemical shifts (δ) of compound **6c** in CDCl₃, and results of COLOC experiments^{*a*}

	¹ H					
¹³ C	1.54–1.67 (3'-, 4'-, 5'-H)	2.12 (5-Me)	3.73 (2'-, 6'-H)	8.04 (6-H)		
160.6 (C-4)		³ J	³ <i>J</i> ^b	³ J		
160.4 (C-2)				^{3}J		
158.7 (C-6)		³ J		^{1}J		
115.3 (C-5)		² J		^{2}J		
44.7 (C-2', -6')			^{1}J			
25.6 (C-3', -5')	^{1}J		^{2}J			
24.6 (C-4')	¹ J		³ J			
15.1 (5-Me)		1 <i>J</i>		³ J		

^{a 2}J, ³J and ⁴J indicate long-range coupling through two, three and four bonds, respectively. ^b Change of the multiplicity was observed in LSPD experiment irradiated at δ 3.73.

Table 3 ¹H and ¹³C NMR chemical shifts (δ) of compound 7c in CDCl₃, and results of COLOC experiments⁴

	'H						
¹³ C	1.62–1.74 (3'-, 4'-, 5'-H)	2.19 (5-Me)	3.49 (2'-, 6'-H)	7.88 (6-H)			
165.3 (C-4)		³ J	³ <i>J</i> ^b	³ J			
159.0 (C-6)		³ J		^{1}J			
157.6 (C-2)				^{3}J			
114.9 (C-5)		^{2}J		^{2}J			
48.3 (C-2', -6')			^{1}J				
25.7 (C-3′, -5′)	^{1}J		^{2}J				
24.3 (C-4′)	^{1}J		^{3}J				
17.3 (5-Me)		^{1}J		³ J			

^a ² J, ³ J and ⁴ J indicate long-range coupling through two, three and four bonds, respectively. ^b Change of the multiplicity was observed in LSPD experiment irradiated at δ 3.49.

amino]-5-methylpyrimidine **8b** was obtained. The UV spectra of products **6c**, **6d** and **8b** showed an absorption maximum at ~ 320 nm (Table 4) and suggested that the amino groups were substituted at the 2-position of the pyrimidine ring.

On the other hand, the reaction of the piperidine 1b with dichloropyrimidine 3a afforded not only 4-chloro-2-piperidinopyrimidine 6a but also its regioisomer 2-chloro-4-piperidinopyrimidine 7a in 24 and 76% yield, respectively. The structure of the products **6a** and **7a** was confirmed by comparison with authentic samples, which were prepared by chlorination⁴ of 2-piperidinopyrimidin-4(3H)-one and by the reaction⁵ of dichloride **3a** with piperidine, respectively. These structures were further confirmed by the UV absorption maximum, at 315 and 290 nm respectively, which were in good accord with those of compounds **6c** and **7c**, respectively.

The reaction of dichloride **3a** with other *N*-substituted six- or seven-membered cyclic amines also afforded not only 2-chloro-4-(cyclic amino)-5-methylpyrimidine (**6a** or **6b**) but also the regioisomeric 4-chloro-2-(cyclic amino)-5-methylpyrimidine (**7a** or **7b**). In the case of *N*-methyl five-membered cyclic amine **1a**, 4-chloro-2-[*N*-(4-chlorobutyl)-*N*-methylamino]pyrimidine **8a** and 2-chloro-4-[*N*-(4-chlorobutyl)-*N*-methylamino]pyrimidine **9** were obtained. The results are summarized in Table 1 and the structure of the products was assigned by their UV and ¹H NMR spectral data (Tables 4 and 5).

It was reported that the reactivity of the 2-position of dichloride 3a relative to the 4-position increases as the solvent polarity and the nucleophilicity of the primary and secondary amines are decreased.⁶ In the above reaction of compound 3a with tertiary amines, the ratios of 2-amino-4-chloropyrimidines to 4-amino-2-chloropyrimidines increased with the increased bulk of the *N*-substituent and the ring size of the cyclic amines (8a/9, 6a/7a and 6b/7b).

The 4-position of compound 3a is considered to be more hindered than the 2-position by the presence of a hydrogen atom at the 5-position. Therefore, the increase of these ratios is explained by the steric hindrance between N-substituted cyclic amines and the hydrogen atom at the 5-position of compound 3a.

On the other hand, compound 2 has a hydrogen atom at the 5-position (*peri*-position) and compound 3b has a methyl group at the 5-position. Owing to the presence of these groups, the 4-position of compounds 2 and 3b is considered to be more hindered than that of compound 3a. The steric interaction between these groups and the N-substituted cyclic amines is considered to be a main reason for the regioselective attack by the cyclic amines on the 2-position of substrates 2 and 3b.

In conclusion, the regioselectivity of the reaction of compound 2, 3a or 3b with the *N*-substituted cyclic amines are reasonably explained by the steric hindrance between the *N*-substituted cyclic amines and the substituent at the 5-position of the substrate 2, 3a or 3b. The reaction of compounds 2 and 3b with the *N*-substituted cyclic amines offers a new synthetic

Table 4 Physical data for 2-amino-4-chloropyrimidines (6a-d, 8a, 8b) and 4-amino-2-chloropyrimidines (7a-c, 9)

Compound M.p. (°C)	.				Found (%) (Requires)			
	M.p. (°C)	Recrystallization solvent	m/z	λ_{max} (EtOH)/nm (ϵ /dm ³ mol ⁻¹ cm ⁻¹)	Formula	c	Н	N
6a ª	oil		197 (M ⁺),	315 (2 300),	C ₉ H ₁₂ ClN ₃	54.5	6.2	21.2
			96 (base)	251 (22 800)		(54.69	6.12	21.26)
6b	oil		211 (M ⁺),	318 (2 400),	$C_{10}H_{14}CIN_{3}.0.1H_{2}O$	56.3	6.6	19.5
			70 (base)	251 (22 200)		(56.26	6.70	19.68)
6c	oil		211 (M+),	325 (2 500),	$C_{10}H_{14}ClN_3$	56.45	6.5	19.8
			204 (base)	250 (25 600)		(56.74	6.67	19.85)
6d	oil		225 (M ⁺ , base),	327 (2 000),	$C_{11}H_{16}CIN_3$	58.4	7.1	18.5
			164	251 (20 400)		(58.53	7.14	18.62)
7a ^b	81-82	hexane	197 (M ⁺ , base),	290 (4 800),	$C_9H_{12}ClN_3$	54.8	6.1	21.3
			218	254 (17 900)		(54.69	6.12	21.26)
7b	oil		211 (M ⁺),	290 (4 700),	$C_{10}H_{14}CIN_3$	56.7	6.6	19.6
			232 (base)	253 (16 900)		(56.74	6.67	19.85)
7c°	61-62	hexane	283 (M ⁺),	289 (7 000),	$C_{10}H_{14}CIN_3$	56.7	6.5	19.9
			206 (base)	262 (10 600)		(56.74	6.67	19.58)
8a	oil		233 (M ⁺),	316 (2 700),	$C_9H_{13}Cl_2N_3$	46.3	5.5	17.8
			91 (base)	248 (23 100)	, 10 2 0	(46.17	5.60	17.95)
8b	oil		247 (M ⁺),	324 (2 700),	$C_{10}H_{15}Cl_2N_3$	48.3	6.0	16.9
			206 (base)	248 (24 300)	10 15 2 5	(48.40	6.09	16.93)
9	oil		233 (M ⁺),	289 (4 400),	$C_9H_{13}Cl_2N_3$	46.35	5.6	17.7
			91 (base)	251 (15 600)	7 13 2 3	(46.17	5.60	17.95)

^a Ref. 4. ^b Ref. 5. ^c Ref. 7.

Table 5 ¹H NMR spectral data for 2-amino-4-chloropyrimidines (**6a–d**, **8a**, **8b**) and 4-amino-2-chloropyrimidines (**7a–c**, **9**). Chemical shifts (δ) and coupling constant (Hz, in parentheses)

Compound	5-H	6-H	Others
ба	6.43 (d, J 5.1)	8.12 (d, J 5.1)	1.54-1.74 (6 H, m, CH ₂ CH ₂), 3.77 (4 H, t, <i>J</i> 5.4, NCH ₂)
6b	6.44 (d, J 5.1)	8.13 (d, J 5.1)	1.52–1.84 (8 H, m, CH ₂ CH ₂), 3.73 (4 H, t, J 6.0, NCH ₂)
6c		8.04 (s)	1.54-1.74 (6 H, m, CH ₂ CH ₂), 2.13 (3 H, s, 5-Me), 3.73 (4 H, t, J 5.3, NCH ₂)
6d		8.05 (s)	1.52-1.88 (8 H, m, CH ₂ CH ₂), 2.14 (3 H, s, 5-Me), 3.70 (4 H, t, J 5.9, NCH ₂)
7a	6.38 (d, J 6.2)	7.97 (d, J 6.2)	1.57–1.77 (6 H, m, CH ₂ CH ₂), 3.52–3.72 (4 H, m, NCH ₂)
7b	6.29 (d, J 6.2)	7.97 (d, J 6.2)	1.48-1.86 (8 H, m, CH ₂ CH ₂), 3.36-3.86 (4 H, m, NCH ₂)
7c		7.89 (s)	1.62–1.74 (6 H, m, CH ₂ CH ₂), 3.43–3.53 (4 H, m, NCH ₂)
8a	6.47 (d, J 5.1)	8.13 (d, J 5.1)	1.72-1.88 (4 H, m, CH ₂ CH ₂), 3.13 (3 H, s, NMe), 3.53-3.72 (4 H, m, NCH ₂ and CH ₂ Cl
8b	())	8.05 (s)	1.68-1.85 (4 H, m, CH ₂ CH ₂), 2.14 (3 H, s, 5-Me), 3.11 (3 H, s, NMe), 3.56-3.70 (4 H, m NCH ₂ and CH ₂ Cl)
9	6.30 (d, J 6.1)	8.01 (d, J 6.1)	1.68-1.88 (4 H, m, CH ₂ CH ₂), 3.06 (3 H, s, NMe), 3.50-3.74 (4 H, m, NCH ₂ and CH ₂ Cl

method for 4-chloro-2-(cyclic amino)quinazolines and 4-chloro-2-(cyclic amino)-5-methylpyrimidines.

Experimental

M.p.s were measured with a Yamato capillary melting point apparatus, model MP-21, and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Brucker AM-300 spectrometer for solutions in CDCl₃, and tetramethylsilane was used as internal reference. Mass spectra were determined with an Hitachi M-80B spectrometer. Analytical and preparative TLC (PLC) were performed on silica gel 60 F_{254} precoated plates (No. 5717 and No. 5715, respectively; Merck).

Reaction of Compounds 2, 3a and 3b with Several N-Substituted Cyclic Amines.—The results are summarized in Table 1. As a typical example, the reaction of dichloride 2 with amine 1b is described below. A mixture of compound 2 (0.40 g, 2.0 mmol) and amine 1b (0.24 g, 2.4 mmol) in 1,4-dioxane (5.0 cm³) was heated at 100 °C for 1 h. After being cooled to room temperature, the mixture was concentrated under reduced pressure. Upon PLC with hexane–AcOEt (5:1) as developing solvent, followed by recrystallization from MeCN, the residue gave compound 4a (046 g, 92%) as crystals, m.p. 73– 75 °C. Preparation of 4-Chloro-2-piperidinopyrimidine **6a**.—A mixture of 2-piperidinopyrimidin-4(3H)-one⁴ (0.18 g, 1.0 mmol) and phosphoryl trichloride (0.31 g, 2.0 mmol) was heated at 100 °C for 1 h. After being cooled to room temperature, the mixture was dissolved in CHCl₃ (10 cm³) and poured into icewater. After being neutralized with 2 mol dm⁻³ NaOH, the organic layer was separated, washed with water, dried over MgSO₄, and evaporated under reduced pressure. Upon PLC [hexane–AcOEt (5:1)] the residue gave compound **6a** (0.17 g, 86%) as an oil.

Preparation of 4-Chloro-5-methyl-2-piperidinopyrimidine **6c**.—A mixture of 5-methyl-2-piperidinopyrimidin-4(3H)-one³ (0.19 g, 1.0 mmol) and phosphoryl trichloride (0.31 g, 2.0 mmol) was heated at 100 °C for 30 min. After being cooled to room temperature, the mixture was dissolved in CHCl₃ (10 cm³) and poured into ice-water. After being neutralized with 2 mol dm⁻³ NaOH, the organic layer was separated, washed with water, dried over MgSO₄, and evaporated under reduced pressure. Upon PLC (hexane-AcOEt (5:1)] the residue gave compound **6c** (0.20 g, 93%) as an oil.

Preparation of 2-Chloro-5-methyl-4-piperidinopyrimidine 7c.—A solution of piperidine (0.34 g, 4.4 mmol) in 1,4-dioxane (3.0 cm^3) was added dropwise to an ice-cooled solution of 2,4-

dichloro-5-methylpyrimidine **3b** (0.33 g, 2.0 mmol) in 1,4dioxane (3.0 cm^3) . The mixture was stirred at room temperature for 2 h and then evaporated under reduced pressure. Upon PLC [hexane-AcOEt (3:1)] the residue gave compound **7c** (0.35 g, 83%) as crystals.

Acknowledgements

We thank Dr. Goro Tsukamoto for his continued interest and encouragement.

References

1 K. Yoshida, T. Tanaka and H. Ohtaka, J. Chem Soc., Perkin Trans. 1, 1991, 1279.

- 2 W. L. F. Armarego, in *The Chemistry of Heterocyclic Compounds*, *Fused Pyrimidines, Part 1, Quinazolines*, Wiley, New York, 1967, p. 228.
- 3 J. Reiter and L. Toldy, Acta Chim. Acad. Sci. Hung., 1974, 82, 99.
- 4 B. Roth and L. A. Schloemer, J. Org. Chem., 1963, 28, 2659.
- 5 C. A. H. Rasmussen, H. C. van der Plas, P. Grotenhuis and A. Koudijs, J. Heterocycl. Chem., 1978, 15, 1121.
 6 O. A. Zagulyaeva, N. V. Bukhatkina and V. P. Mamaev, Zh. Org.
- 6 O. A. Zagulyaeva, N. V. Bukhatkina and V. P. Mamaev, Zh. Org. Khim., 1978, 14, 409.
- 7 I. I. Kuz'menko, USSR Pat., 551 329, 1977 (Chem. Abstr., 1977, 87, 39530); I. I. Kuz'menko and Yu. V. Bardik, Fiz. Akt. Veshchestva, 1988, 20, 1 (Chem. Abstr., 1989, 110, 18178).

Paper 1/04812K Received 17th September 1991 Accepted 10th December 1991